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Probability Collectives for Unstable Particles
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Unstable particles, together with their stable decay products, constitute probability col-
lectives that are defined as Hilbert spaces with dimension higher than one, nondecom-
posable in a particle basis. Their structure is considered in the framework of Birkhoff-von
Neumann’s Hilbert subspace lattices. Bases with particle states are related to bases with
adiagonal scalar product by a Hilbert-bein involving the characteristic decay parameters
(in some analogy to the-bein structures of metrical manifolds). Probability predic-
tions as expectation values, involving unstable particles, have to take into account all
members of the higher dimensional collective. For example, the unitarity structure of
the S-matrix for an unstable particle collective can be established by a transformation
with its Hilbert-bein.
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1. STABLE PARTICLE HILBERT SPACES

The Hilbert space used for stable particles with nrassnomentump, and
possible homogeneous degrees of freedoml, 2,. .., K—including particles
and antiparticles with spin and internal degrees of freedom—comes with creation
operators &m, p) and annihilation operators;(m, p). To have the involved con-
cepts and notations at hand, it is shortly reviewed by repeating its construction.
The underlying quantum structure for Bose (commutater— 1) and Fermi
(anticommutatoe = + 1)

[u*, u]l. =1, [u, ul =0=[u*, Ul
comes with the time translation behavior of the Bose and Fermi harmonic oscillator
as implemented by the Hamiltonian
[u, u]_.
e
involving the quantum-opposite commutator and a frequency (energy)scale

H=E
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Creation and annihilation operators build by the linear combinations of their
products the quantum algebr@s(C?), countably infinite dimensional for Bose
and 4-dimensional for Fermi

[u,ule, [u*, u*].

_|C™ Bose, e=-1

2y __ * {[U*, u]e -1 }
Q.(C%) = C[u, u*]/modulo

Fermi, e =+1

(UK |k,1=0,1,...} Bose

H 2y .
basis 0fQ-(C7) : {{1, u, U, uu} Fermi

The given bases contain eigenvectors of the time translat@a& [iH,a]
[H, U(u")'] = (k — EU‘(Wu")
The Fock statg€ )¢, a conjugation compatible linear form of the quantum
algebras, is induced by the scalar prodct u) = 1 of the 1-dimensional basic

vector spac€u. The scalar product invariance grdufil) contains the irreducible
time translation representatior— €' e U(1), generated by the Hamiltonigh

(U u)e = ((Uwpk =1 k=0,1,...

2
Q(C)sar (a)peC { (u)'ukye = 0 fork #1

The Fock space FogkC?) is a quotient space of the quantum algebra, consti-
tuted by the classes with respect to the elements with trivial scalar product (the
annihilation left ideal in the quantum algebra)

{acQ(C? | (@a)r = 0} = Q(CHU*,  Fock(C?) = Q.(C?)/Qc(C*)u*
Fock (C?) has a definite scalar product. The classes are called state vigtors
The clasg0) (zero quantum state vector) of the algebra unit 1 is the harmonic
oscillator ground state. It is a cyclic vector for the quantum algebra action with
the annihilation propertyy0) = 0. The state vecton&) with k quanta constitute
a Fock space basis, they are time translation eigenvectors

k
ground staté0) = 1+ Q. (C?)u*, |k) = |0y, H|K) = (k— %>E|k)

VK
basis of Fock(C?): {lklk=0,1,...} Bose s
110y, 12 Fermif * <11 = 9

The Bose structure in quantum mechanics—not the Fermi structure—allows
a position—momentum interpretation

Bose onlyx u* +u ip u*—u {[U*, ul=1=[ip, x|
H = Bl = £

V2 V2
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The familiar Schodinger wave functiongk) = vy (x) are orbits of the position
translationR = spex > x — ¥ (x) € C.

The Fermi Fock space is a Hilbert space as well as the completion of the Bose
Fock space. The Fock vector spaces are the direct sum of the totally symmetric
and antisymmetric tensor powers for Bose and Fermi respectively of the complex
1-dimensional Hilbert spac€|1) with the 1-quantum state vectors of energy
denoted by1) = |E)

Fock (C?) = \/ W_(E) = C™ with W(E) C|E) =
Fock, (C?) = AW, (E) = C? = u(E)|O, (E|IE) =1

Such Fock spaces will be used for different energies (frequen&es)py =
VM2 + p=2.

For a stable particle with mass m, momentprand homogeneous degrees
of freedoma=1,..., K one works with a direct sum-integral of Hilbert spaces,
integrating with a Lorentz invariant measure the 1-quanta Hilbert spaces for all
momenta

EB . (2 )3 WA, B): [ui(m, ), (M, B)]. = 52(2)? pod (B — )

with
= /m2+ p2
W2(m, ) =Cim, B, a),  Im, p,a) = uw’(m, {)|0)
(m, §, bim, B, a) = 8§(27)*pod(P — @)

Up to the overcountably infinite dimensional momentum depend@ﬁgbme
1-quantum basic Hilbert spaces used are a direct sum of a Bose and a Fermi space
with—for stable particles—orthogonal subspaces for different masses

S K
W=W, W : W, = PW(ma), W.(m)=HWm)=CK
A=1 =

(mg, bima, &) = §aBS5

The corresponding multiquanta states—generalizing the state vefitprs
Fock (C?) above—are appropriately defined tensor products.

2. UNSTABLE STATES AND PARTICLES (PART 1)

To introduce into the later, more abstract sections, the kaon system with the
short and long lived unstable neutral kaon is given as an illustration.
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2.1. The Collective of Neutral Kaons
The system of the two neutrls(l—mesonsKgL (short and long) with the mass
denoted state vectofMs )
.
M=MO+i 5 >0

spans a 2-dimensional Hilbert space. The kaon particles are no CP-eigenstates
|K.) to which they can be transformed by an invertible<(2) matrix, called the
Hilbert-bein of the neutral kaon-system

[Ms) IKy) 2
= , GL(C
<|ML>) & <|K_)> & € GL(C9)

Under the assumption of CPT-invariance the matrix is symmetric and
parametrizable by two complex numbers including a normalization factor

1 1 €
br= —F—— , ¢NeC
’ N\/1+|e|2<€ 1)

There are no observable particles connected with the CP-eigenstates.
The time development is implemented by a Hamiltonian, non-hermitian for
unstable particlesi, # HJ

cd 1K (1K) d (IMg)) o |Ms)
fort>0: at (|K>> =iH, <|K)) , at <|ML)> =i diagH; <|ML))

with the diagonal form for the energy eigenstates

) Ms O
Hot,t = diagH, =
&2HoE, lagH> < 0 ML)

The CP-eigenstates constitute an orthonormal basis

Ky K Ky | K- 10
CP-eigenstate :< + 1KoK TR =
(Ko T Ky) (Ko [ K2) 01
whereas the scalar product of the energy eigenstates is given by the absolute square
of the Hilbert-bein

particlesiz, = &gz — (Vs | Msl (MsIMu) - 110
TR T M Mg MMy ) TINP s 1

with
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The experiments give a nontrivial transition between the short and long lived
kaon proportional to the real part ef Therefores, is not diagonal and, not
unitary

§~0.327x 102 = & ¢ U(2)

A decomposition of the unit operator in the 2-dimensional Hilbert space can
be written with orthonormal bases, e.g. with CP-eigenstates

1z = K ) (K| 4+ K (K|

or with the non-orthogonal particle basis which displays the inverse scalar product

matrix
1 INP? 1 -5
2 =152 (s 1

N 2
=1 = %“MSHMﬁ — 8IMs){ML| — 8IML)(Ms| + [ML)(ML|]

2.2. Decay Collectives

The two translation eigenstates (particles) for unstable k@idigg) come
together with their decay products, elg, =), |7, 7, 7), |7, |, v), approximated
as stable in the following. All those particles together constitute an example for a
decay collective, consisting of unstable decaying particles and their stable decay
products.

In general,d unstable states (particlegM, )|k = 1,...,d} spanning the
space|M) = CY with complex masse = M° + i % I'> 0, are considered
together with their stable decay modes, givensbstates (particles)m,)ja =
1,..., s} with real massem which span the spaden) = C°. All those particles
are assumed to span a Hilbert sp&ewith dimensionn=d +s. Therein, the
subspacém) has an orthonormal particle basis

(m|m)=1s

There are orthonormal baséd) for the d-dimensional complementary space

|m)+ = ¢
(Uu)y Uimy) (13 0
(mjuU) (m|m) 0 L
The time development in the orthonormal ba§is), |[m)} has the typi-

cal triangular form with the diagonal time development for the stable particles
m=m* = diagm and a nondiagonab(x s) matrix D parametrizing the decay
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structure

cd W) (v _(Ha D\ d
fortzo'a(|m)>_lHW<|m)>' HW_(O m)’ dt|m)_|m|m)

The Hamiltonian cannot be hermitian, itdy # H;,—otherwise all eigenval-
ues would be real. It cannot even be normal in the orthonormal basidyj ey, #
H,; Hw—otherwise it could be unitarily diagonalized digfyy = & Hw& ~* with
& e U(n) and, therewith, the energy eigenstates were necessarily orthogonal, having
the scalar product matri&&* = 1,. The HamiltonianHy, has to be diagonaliz-
able, i.e. its minimal polynomial has to have only order one zeros. The nonunitary
diagonalization matrix

M O
EwHwéy' = diagHw = (0 m) , Ew ¢ U(n), M # M*

called the Hilbert-bein of the decay collective, is the product af a fI) matrix&q
diagonalizingHg—as exemplified in the kaon system of the former subsection—
and a triangular matrix

a1 (X w) (& O\ [& w
Safladg ™ = M, sVV_(O 15) (0 15)_<o 1S>

_l .
= Hw = év_vl (diagHw)éw = (g'd &4 (Mvr\rl1 Wm))
i.e., D= ‘i:(;l(MW _ Wm)

The decaying particlegM) have projections both on the orthogonal states
|U) and on the stable particlés)

o [IMYY f&a w [IU))  (&lU) +wm)
particles: = =
Im) 0 I/ \Im Im)

The scalar product matrix for the decay collective withriked + s particles arises
from the diagonal matrix with the orthonormal states and the decay channels

fw = Bkl = (MIM) (MIm)\ (lg w) (ca O) (1g O

WESWSWE A mimy mimy) " \o /) \o i) \w i
L9 +ww*
W*

w .
1 ) with ¢q = &q&g

The stable particles remain an orthogonal basis of the subgméace
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The decomposition of the Hilbert space unit operator in the nonorthogonal
particle basis displays the inverse scalar product matrix

ca(f O\ (@t 0) (1 -w) _ (g —Lg W
W\-wr )\ ) \o 1) T \cwrggt L+ wrggtw

=1, = [U)U]| + Im)(m|
= [M)¢g MM — M) gg tw(m] — Im)w* g (M| -+ Im)(1s + w*¢g tw)(m|

To define probabilities and expectation values for unstable particles, a more
general orientation with respect to the Hilbert space structures involved will be
useful.

3. LOGIC OF QUANTUM THEORY (A SHORT REVIEW)

With Boole, Leibniz's dream of a formalization of logic which allows to
draw conclusions in a mechanical way—like arithmetic computation—started to
become realized. Apparently, logic condenses the structures of our experiences
and, therewith, shows a close relationship to the formulations of physics. With the
paramount importance of the complex linear superposition structure of quantum
theory the classical Boolean logic, appropriate for classical phase space physics,
gave way to a quantum logic as formulated by Birkhoff and von Neumann. As a
consequence, the probability structure, already arising in classical physics, e.g. in
thermostatistics, is not primary in quantum theory—it comes, so to say, as a square
of a linear complex probability amplitude structure.

Nothing is new in the following section—it should serve as a short reminder
and should introduce the concepts and notations used later on. In addition to
Birkhoff-von Neumann'’s original article there is Varadarajan’s detailed text-book
which can be consulted for a deeper information.

3.1. Logics

The propositions of a logic are formalized as the elements of a lattice, i.e. of
a set with two associative and commutative inner compositions (masat join
u) which have an absorptive relationship to each other

(L,myu) elatt : au(anb)=a=an(aub) (absorptive)

Each lattice carries its natural ordeE b <= anb = a.
A lattice with an originO—it is unique

OCa, i.e.0=0nma forallae L

allows the definition of disjoint elements lay b = O.
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A complementary lattice has an involutive contramorphism relating meet and
join with the origin as meet for each lattice element and its complement
(aub) =a‘nhbc

L—>L, a—~a% a“=a .
ana‘®=0 forall aelL

The complement of the origin is the unique and
O°=m3Ja aua®=mnm forall acL

With an appropriate language for the logical concepts a complemented lattice

is used as a logic
L : proposition
m: conjunction (and, et)
L adjunction (or, aut)

(L,m,u,0,c)elogic: C: implication (then, ergo)

O: absurd proposition (falsehood, falsum)
L : negation (not, non)

self-evident proposition (truth, verum)

A lattice is distributive for
au(brnc)=(aub)yrn(auc)
an(buc)=(@nbyu(anc)
Weaker than distributivity is modularity, a partial associativity for meet and join

aCc=au(bncy=(@ub)nc

3.2. Boolean Logics

A distributive logic is, by Stone’s theorem (Stone, 1936), isomorphic to a
lattice of subsets\t € 2M = {X € M} with 2M the power set of a séfl. The
lattice operations are intersection and union, the negation uses the set complement

(distributive)logic > (L, m, u, O, ¢) = (M, N, U, 3, Cyn)

The valuation of a Boolean logic employs probability measures, i.e. disjoint
additive mappings on the lattice with positive values between 0 for the falsum and
1 for the verum

w@ = 0
wi MR, L u(Xuy) w(X) + u(Y) for XnY = ¢
nM) =1
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In the classical formulation of physics, the propositions in the corresponding
Boolean logic are subsets of the phase space of a physical system. In deterministic
classical mechanics, the measurements are formalized by the numerical values of
phase space functions, i.e. the probabilities used are yes—no probabilities on point
subsetd(x, p)} of the phase space

X={x,p)}: ux: {8, X} - {0,1, ux(X)=1
In thermostatistics coarser subset lattices are used.

3.3. Birkhoff-von Neumann Logics

The subspaces’2= {W c V| closed subspagef a Hilbert spac&/—in the
following only over the abelian fieldK = R, C—with, again, the intersection
as meet, but the span as join, the trivial space for the logical “falsum” and the
orthocomplementation for the negation constitute a linear logic

(L,mu,0,0) = (2%, 0, +, {0}, 1) € logic (linear)

A Hilbert state space of quantum mechanics is used for a Birkhoff-von Neumann
logic. It extends the set union for a Boolean logic by the quantum characteristic
linear superposition. In the following, the relevant features of subspace lattices are
reviewed.

For dimensiom > 2 (where the vector space endomorphisms are nonabelian)
linear lattices are not distributive (bagi})

W =Keé =K, i=1,2 fullspaceV = W; + W, = K2
diagonal spaceA = K(e' + €?) = K

Wi +Wo))NA=A#MWiNA)+(WoNA)={0}+ {0} = {0} = Wi N W,

A lattice with finite dimensional subspaces is modular.

Linear lattices can be “operationalized,” i.e. they can be embedded into the en-
domorphisms of the full vector spa¥ge denoted byAL (V)—a unitalK-algebra,
for finite dimensionsAL (V) =V ® VT with the dual spac& ". Any idempo-
tentP (projector forP # 0) defines a subspad and—by its kernel—a direct
complementV’

AL(V)> P =P? > W ="P(V) e 2"
V=WoeW withW =P 0)e2Y

One subspace can be defined by different projectors and can have different
complements—in the example above with two different dual bases

idy =P14+Pr=e'@&+Q6&
=P +Pr=€'®@@E -&)+(E+)RE
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Wy = P1(V) = Pi(V), V=WaoW,=W, A

Unigueness can be obtained with a dual isomorph’/s@VT.

With a nondegenerate inner product (symmetric bilinear or sesquilinear
form)

():VxV =K, V,w)=(v|w) = (v|w)
(VIiw+u) =(vw)+(v]|u),(v]aw)=alv|w)
V|V)y={0)&v=0
each subspace has a unique orthogonal subspace partner
1:2V 52V, Wi Wh={veV|(W|v)={0}}
In a finite dimensional spacdé orthogonality defines an involution
VK" W=wH
With a nondegenerate square, projectors are bijectiveley related to subspaces

2V s WEPw e AL(V), W =Pw(V)

i.e., the lattice of vector subspaces can be considered to be operators.

The dual isomorphism allows the bra—ket notation (next subsection) where-
with the projector for a finite dimensional subspae= K* can be written with
aW-basis{e"},'j:1 (summation convention)

Pw = &) (€] with (€| &) = ¢, ¢y, =8
try Pw = C)\K{KA = 5,’; = d(W)

Theinvolution defined by orthogonality is not complementary for an indefinite
nondegenerate square. E.g., in a 2-dimensi@@l,1) Minkowski space with
Lorentz metric §_%) in a basis{e®, €%}, time and position translatioris &ndS
resp. are orthogonal to each other whereas the isotropic lightlike subdpaees
self-orthogonal

Tt = (Re®) =Re® =S

14,1
ap # 0= R(ae’ + pe’)*t = ]R(—eo + Ee3> =L =RE+e’)=L;
(04

1
Pr = |E9(e°], Ps=—Ie® (€], P.= §|e°ie3><e°q:e3|

A complementary linear lattice has to come with a definite square, i.e. with a scalar
product, which is nondegenerate in each subspace
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ViVV=0=Vv=0=K"ZV=W+W=WopW =W1LW

Aninner product oV = C" is positive if, and only if, it is a produat, = SS of
an endomorphisns € AL (V) and itsU(n)-hermitianS*.

Now the probability valuation of vector space sublattices: With a scalar prod-
uctz, each nontrivial finite dimensional vector sp&éearries a yes—no probability
with a normalized discriminant

¢=0:pw: {0, W}— {0, 1)
uw(W) = detow = det(e* | &) =1
The classical measure comes as the positive scalar product.
The Schodinger wave functions—possible for Bose structures, e.g. the har-
monic Bose oscillator abovix) = v (x)—as position translation orbits allow a

“smearing out” of the probabilities for the 1-dimensional subspaces (Hilbert rays
W = Clk))

detgw = (k | k) =fRdx|wk(x)|2=1

to position densities for the probability, herg(x)|?.
For finite dimensiorv = K", the trace is an invariant linear form with the
trace of a projector giving the dimension of the defined subspace

try 1 AL(V) = K, f— try f
try P =dimgP(V)

The expectation valueSy in the subspac®V of the operating algebra elements
uses the trace, normalized with the dimensioRwr = d(W)

1 G (€1 T 1)
AL(V)> f > Ew(f) = —t =22 7
(V) s f = &w(f) dw) rv Pw o W)
The expectation values W of the other subspaces use their operational form as
projectors

eK

Ew(U) = Ew(Pu) = gag trv Pw o Pu € [0, d(U)]
Ew(U1 L Uz) = Ew(U1) + Ew(U2)
Uc W= &wU) = 5
Ew(V) = Ewlidv) = gagy trv Pw = 1 = Ew(W)

gW:ZV—)R+

A familiar special case are the symmetric transition probabilities between two
1-dimensional spaces € 1, 2)

W =KI€), Pw = I€)(E€] = Ewi(Wo) = Ew,(Wh) = | (€' | €412 € [0, 1]
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A basis formulation reads as follows—each subspace comes with a basis
(different indices)

Pw = €8 (€] Pw o Py = |€)8. (€ | €)ipale®
Pu = 1€ ¢aal€®] try Pw o Py = Guisal€ | €) (e | eB)
especially simple for Euclidean bases

G =8, (Ba=0dpa=>try PwoPy =) [(|e"” <dW)dU)
AA

3.4. Hilbert-Beins for Particle Collectives

For abasige|« = 1,..., n} of the Hilbert spac&V = C" the scalar product

gives the matrix

W XW—C, (e8]e) ==
with the inverse scalar product on the dual space (linear forms) with the dual basis
{eclk =1,...,n}

—1 . \\/T T _ e

{ W x W _>C1 <e)\|e/(>_§l{)»_§)\.l(

The dual isomorphisnW = WT, induced by a nondegenerate product, allows
Dirac’s bra-ket notation
& =€) = dual products® = (e,, &) = (& | € = TG
& = (€2 a " ! !

Using the dual isomorphism, which is antilinear for a sesquilinear fgralinear
transformation ofV can be expressed in the bra-ket notation

foW—-W, f=fle¢®e =), €
(efle) = figm = £

Orthonormal bases$e?|la=1,...,n} are related to the basig‘} by a
W-automorphisng (n-bein in the Hilbert space)

£: W —> W, e = &) > &5le?)
(eb | €8) = aab, gflT cWT — WT, e — (571)2%
8¢ = (& > (e

Bases of translation eigenstates describing unstable particles have not to be or-
thonormal. An unstable particle collecti¥e < Py, comes with its Hilbert-bein

Ew-
The state space metric is the absolute square of the Hilbert-bein

(€| &) = ¢ = (£")6%085, ¢ = 806"
(& l8)=Co=E Do E ™7, ¢t=t8" e=5"
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The positivity of the Hilbert product is seen in the matrix product form—any
productf f* of (n x n)-matrices is positive, i.e. has positive spectrum.

The Hilbert-beirt arises in inner automorphisms for linear transformations—
in the bra-ket formulation

(€] fle) = (EMp(E"| T le?)&s

Obviously, the structures above with the bra-ket formalism and the transition
from orthonormal to general bases constitute the sesquilinear product analogue
(Saller, 1998) of the more familiar structures with a bilinear real metreg. for
real 4-dimensional spacetime the raising and lowering of indicesgtidg 2.

The metric is the square of the diagonalizing tetrad (vierbein)

g"’ =hinh, g=hnh'

with flat Minkowski space orthogonal metrical matrix= (3 _%3). The transposi-
tion T in the real bilinear case is replaced by the conjugate transposifimrthe

complex Hilbert space. The spacetime metric discriminangdet—(deth)? has

its analogue in the discriminant of the Hilbert product

detc = |det&|?

which is used for the probability normalization of particle transition amplitudes.
What is not analogue for spacetime metric and vierbein, on the one side, and
Hilbert space product and Hilbert-bein, on the other side, is the real 4-dimensional
spacetime dependence of the tetrad (mekie} h(x) which has no counterpart
in the Hilbert-bein and state space metric. In addition there is the important dif-
ference that the bilinear metrical matrix represents a teg(sgre M (x) ® M (x)
of the tangent Minkowski translatiofd (x) = R* whereas the sesquilinear scalar
product matrix of the Hilbert space is no tengog W ® W. Raising and lower-
ing indices with the Hilbert space metrig e.g. in(e*| f |&) = f;j;’“‘, changes
bilinearity into sesquilinearity.
A spacetime tetrad represents (at each spacetime yppiantlass of the real
10-dimensional symmetric space with the Lorentz groups in the general linear
group

GL(R*)/O(1, 3)= D(1) x SLo(R*)/SOy(1, 3)

with the “overall” dilatation grouf>(1) = expR and the orthochronous Lorentz
groupSOy(1, 3). The classes are characterized by the value of the similarity in-
variants which can be found in the coefficients of the characteristic polynomial
det (logh — X1,) for the tetrad generator. The tetrad manifold has two continuous
invariants{Ag, A} which can be obtained also by diagonalization of the symmetric
metrical matrixg = g' with an orthogonal transformatio® and and a double
hyperbolic dilatation transformatidn, the latter one equalizing the dilatations for
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the three space directions

g= ODdiaggD"O" with O e SO(4), D € SOy(1, 1Y

e 0 (L 0
iagg = SR VS
oo ()= 2 (5 °1

The two continuous invariants for the local rescaling of time and position (local
time and local length unit)

£x)

(0, d%) = (e*Wd, e0dx), &% = 2,

e = ¢(x)

arise from the invariant dét = % for the overall dilatatiord(1) and the invariant
c (local velocity unit) for the subgroupOp(1, 1) inSLo(R*)/SOy(1, 3).

As for the Hilbert space metric, a Hilbert-bein represents a class of the real
n?-dimensional manifold with the unitary groups in the general linear group

GL(C")/U(n) = D(1) x SL(C")/SU(n)
with one invariant forD(1) andn — 1 invariants for the special factor. Afi-
invariants (similarity invariants of the Hilbert-bein generator in det flog X1,])
are taken from a continuous spectrum and can be found with the manifold

isomorphy

SU(n) = SO2)"1 x SyY(n)/so2)"1
SL(C")/SU(n) = SOy(1, 1)1 x SY(n)/so2)"*

by a special unitary diagonalization of the hermitian scalar product matrix

¢=¢"
¢ = £8&* = UdiagcU* with U e SU(n)
A1 ... 0 .
diags = e?o eD(1) x SOo(L, 1N, Y A=0
0 e QZAn k=1

The non-orthogonality of unstable particles gives rise to invarighfg;_, in a
normalized Hilbert-bei§, deté = 1, which are related to the characteristic decay
parameters.
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4., UNSTABLE STATES AND PARTICLES (PART 2)
4.1. The Unitarity of Particles

For stable particles with mags, Wigner's definition (Wigner, 1939) is used,
characterizing a particle as a vector acted upon with a unitary irreducible repre-
sentation of the Poincargroup which—because of the noncompact nonabelian
degrees of freedom—nhas to be infinite dimensional as expressed by the integral
above fR3 (‘;ST‘))S (27 whereR® for the momenta parametrizes the boost cosets
SOp(1, 3)/SO(3). With Wigner’s definition, confined quarks are no particles, they
are no eigenvectors with respect to the spacetime translations, i.e. they have no
invariant translation eigenvalue (particle mass).

For massesn’ > 0, the representations of the Poirgazbvering group
SL(C?) x R* with the orthochronous Lorentz covering gro8h(C?)/{£1,} =
SOp(1, 3) are induced from the unitary representations of the direct product little
groups with the spin or polarization group for the space rotations

form?> 0:SUR) x R — U(1+ 2J)
form? =0:S0(2) x R — U(1+ 2| %))

The translations in the direct product groups can be taken to be time translations,
e.g. in arest system fon> > 0. They come in harmonic oscillator representations
as given in the 1st section and represented in the phase group, Ugl)ig=

U1+ 2J3)/SU1 + 2J)

R>tefecU(l) withEeR

In contrast to the compact position rotations the noncompact translations have
also representations in noncompact groups. Unstable particles with a nontrivial
positive width are orbits of not unitary irreducible time representations

R, >t D(t)=e®E-2t ¢ U(l) withl > 0
They can be used only for the future mondid . Unitarity as necessary for a
complex representation of a real group is restored by taking the direct sum with
the anti-representation (inverse-conjugated) for the past mdtoid

R_ >t D(—t)* = eE+2)t ¢ y(1)

The resulting representation is indefinite unitary (Saller, 2001)

—%t
R 5t D(t) ® D(—t)* = €t (g om) e U1, 1)c GL(C?
erz
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leaving invariant the indefinite square in the off-diagonal isotropic basis

01
¢y C?*x C? - C, ‘=
' ' 1 0

which cannot be used for a Hilbert space product. It is possible to use a 2nd de-
composable conjugatidi(1) x U(1) ¢ U(2) with scalar product; = (§ 9 in the
2-dimensional space. Then unstable particles are described by non-unitary future
monoid representations in a Hilbert space, i.e.—in contrast to stable particles—
the scalar product invariance group defining the probability does not contain the
represented time translations. Probabilities have a nontrivial time dependence.

Such aU(1, 1)-representation of the translations can be used—as for sta-
ble particles—to define corresponding representations of the Peimganoid
SL(C?) x R} with R% the future spacetime translation cone. In addition to the
energy width there arises also a momentum spread and, therewith, nontrivial spin
mixtures for unstable particles (Blum and Saller, in preparation).

These were some short remarks to bypass a not satifactorily solved problem—
how to reconcile the different unitarities for rotations (definite) and spacetime
translations (possibly indefinite) with the probability interpretation (necessarily
definite).

4.2. Nondecomposable Particle Collectives

In the “huge” Hilbert space with all particles there are—neglecting the mo-
mentum dependengee R*—1-dimensional subspaces connected with stable par-
ticles and higher dimensional ones for decay collectives. With respect to probabil-
ities and expectation values, those subspaces have to be considered as a “whole.”
This can be seen in some analogy to a relativistic spacetime vector with many
bases for time and space projections= (xo, X), but with only one Lorentz
lengthx?.

It is assumed that the “huge” Hilbert space has a basis with particle states
(translation eigenstates), stable and unstable. It is decomposable into nondecom-
posable orthogonal subspac®¥|U) = {0} for W £ U, assumed to be finite di-
mensional (always neglecting the continuous momentum depengead’).

A basis withn particle states in an orthogonally nondecomposable subspace
W = C" with a corresponding positive scalar product matx = éwé, and
Hilbert-bein &y will be probability-normalized by its discriminant, dgf, = 1,
and with trivial phase, i.e. the Hilbert-befyy, involves maximally (> — 1)-real
parameters of a noncompact cl&sgC")/SU(n) with (n — 1) continuous invari-
ants

scalar productw = &wéy, = 0 with dettyw =1
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A nondecomposable 1-dimensional space is the ray of a stable particle state
W =C|m) with detzz={(m|m)=1
An orthogonally nhondecomposable space with 2 describes a decay collec-
tive W = |M) @ |m) = C" as discussed above: The Hilbert-bein as transforma-
tion from orthogonal to particle basis can be brought to a triangular gy
&1, w # 0, with a unit submatrix leaving invariant the subspang= C° with
s > 1 stable states and a non-orthogonal complerfidnt= C% with d > 1 un-

stable states. The discriminant normalization of the full scalar product matrix
coincides with the discriminant normalization for the unstable states

detiw = (detéw | detéw) = (M | M)(m | m) — (M | m}(m| M)

ww*  w

— det (4" + ) — detzy = (detgy | detgy) =
w* 1
The projector for the decay collective involves the inverse scalar product matrix
‘'
Pw = IM)¢g (M| — [M)¢g w(m] — [mw*gg ™ (M] + [m) (s + w*¢g w)(m

The projectors for the non-orthogonal subspaces are

Pivy = IM)(Ca +WwW) M|, P, = [m)1s(m|

The probability normalization for the kaon system with the discriminant is
collective: It involves the decay parameter, i.e. the non-orthogonaiitith 0 <
§2<1

dets, = (Ms | Ms)(M_ | Mp) — (Ms | ML) (ML | Ms)

1 (1 6 1-62
=det—< ):—:1:>|N|2=1/1_52

INZ\s 1 INJ4

and differs from the individual probability normalization for each particle which
would be given by{N|? = 1. The continuous invarian related to the rank 1 of
the Hilbert-bein manifoldSL(C?)/SU(2) = SOy(1, 1) x SU(2)/SO(2) is seen in
the SOy(1, 1)-adapted parametrization of the kaonscalar product

(Ms | Mg)  (Ms | ML) cos’  sinhA e 0
=1 . ~ , tanlA =34
(ML | Mg) (M | M) sinhA  coshA 0 e*?
Neglecting weak and electromagnetic interactions, the neutron and pion, e.g.,
are stable. Taking into account the mentioned interactions, each of these parti-
cles constitutes the decaying subspace of a decay collective, e.g. for the neutron

{In}, | p, & Ve)} With a nontrivial projectionn|p, €, Ve. “Switching on” all inter-
actions there seems to exist only a small number of high dimensional orthogonally
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Invariants for Nondecomposable Collectives

Particle Mass for SpisyU(2) or Charge  Fermion number
(lowest mass translatio®*  polarizationSO(2) u(1) U(1)
representative m? Jor =+ | J3] Q F
Photon 0 +1 0 0
(Anti) proton >0 1 +1 +1
(Anti)electron >0 ; Fl +1
(Anti)neutrino >0o0r=0(?) for+1(?) 0 +1

nondecomposable particle collectives which span the particle Hilbert space. Their
particle representatives with lowest mass (the lowest step in the staircase) reflect
the few invariants of relativistic particle physics, i.e. the mass for spacetime trans-
lationsR*, the rotation invariants, characterizing s@b(2) for massive particles

and polarizatiorSO(2) for massless ones and the electromagnetic charge num-
ber for a phase group(1). If the proton is stable, there has to be an additional
invariant, usually related to fermion numbErconservation which is taken care

of with the different association of charge and fermion number for proton with
Q + F = 2 and electron witlQ + F = 0. In addition, there may exist invariants

for the leptonic phases—electronic, muonic, and tauonic.

Stable and unstable particle states come on the same level as Hilbert space
directions—stable particles, e.g. the electron, are not “more fundamental” than
unstable ones, e.g. the muon or the pion. &matrix with only stable in- and
out-particle state vectors where the unstable ones are taken care of as intermediate
fictive poles only (Weinberg, 1995) is against a democratic treatment. Depending
on the degree of approximation to the distinction of stable—unstable as quantified
in the magnitude of the off-diagonal entriasin the Hilbert-beingy, one may
work with a larger or a smaller number of nondecomposable collectives, i.e. with
a smaller or a larger number of stable particles.

4.3. (Non) Unitary S-Matrix for Unstable Particles

As an example, how the collective higher dimensional structure affects the
probability interpretation, the unitarity structure of tBenatrix, involving a scat-
tering with unstable particles, is considered.

Starting from a free HamiltoniaH, acting on a Hilbert space with an eigen-
vector basis

HolE) = E|E)

the in and out states for an interaction Hamiltontldnare assumed to be con-
structable by inner automorphisms with the Moeller operafersfor infinite
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future and past (Weinberg, 1995)
H = QiHoQ:" = H|E+) = E|Ex) for|Ex) = Q4|E)
The scattering operator is the product of the Moeller operators
S=Q'Q
In quantum mechanics the Moeller operators are assumed to arise as limits
Q) =t ™t 9, = lim Q(),

t—+o0

Unitarity for hermitian Hamiltonians is assumed to survive the limit
ifHo=H, H=H"=Qt) =)™, @t=0'=s=5"

The scattering amplitudes are not matrix elements of linear transformations,
but scalar products of in and out states—sesquilinear, not bilinear structures. They
start with the scalar product matrix of the free particles

(E%Z | EX) = (E*|SIE¥) = (E*E¥) — 2in (E*|T|EY), S=1-2inT
If a decay collective is involved, th8-matrix S is not unitary
St = (EMSIES) = ¢+ = &6 (E )5+

Unitarity is expected for th&matrix § transformed with the Hilbert-bein from
a nonorthonormal particle basis into an orthonormal nonpatrticle basis

EP(E*SIE")(E")? = (b|Sla) = S5
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